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The D > 1 Bootstrap
Miguel F. Paulos

The goal of this exercise is to get you to obtain your first kink, or at least your very first
non-trivial bounds in higher dimensional CFTs. We will focus on D = 2, since in this case the
conformal blocks are known explicitly and there is a nice kink at the position of the 2d Ising model.
All computations should be done in Mathematica!

The D = 2 conformal blocks are given by

G∆,L(z, z̄) =
1

2

(
k∆−L(z)k∆+L(z̄) + k∆−L(z̄)k∆+L(z)

)
kβ(z) := z

β
2 2F1 (β/2, β/2, β, z) . (1)

Now, recall the crossing sum-rule:
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G∆,L(1− z, 1− z̄)
(1− z)∆φ (1− z̄)∆φ

. (3)

We will choose a particular value of ∆φ – let’s start with 1/8, the dimension of the σ operator in
the 2d Ising model – and derive an upper bound on the dimension of the lowest scalar operator in
the OPE φ× φ.

The first step is to turn the continuously infinite set of constraints contained in the crossing
sum rule into a finite, discrete set. The second step is to choose a grid in the space of quantum
numbers; we will not be able to allow all ∆, L on the computer!

1. Define a grid Z in z, z̄ space. Define a grid D in ∆, L space. For each pair (∆, L) in D

evaluate numerically the F
∆φ

∆,L on the grid Z to obtain a set of vectors ~v∆,L.

Remarks:

• There is a lot of freedom in the choice of grids. The finer the better, but computations
will become slower. You should aim for vectors of size . 10. A Z grid clustered around
z = z̄ = 1/2, with z̄ = z∗ also works reasonably well. Remember the symmetry of the block

under z ↔ z̄ and antisymmetry of F
∆φ

∆,L under z, z̄ → 1− z, 1− z̄ to avoid repeating points.



• The grid D containing spins from 0 to 8 or 10 at the most (in steps of 2; only even spins
appear in the OPE of two identical scalars). The values of ∆ should be those consistent with
unitarity (∆ ≥ L in D = 2), up to some ∆Max of order a couple of dozens, with a rough
spacing of order 10−1.

• It is sufficient to evaluate everything with machine precision. It is better to split the compu-
tation into two steps, one where we compute the blocks on the Z grid and another where one
includes the factors involving ∆φ. This is useful because the second step is much faster than
the first, and we’ll eventually be interested in repeating the computation for many different
∆φ.

To derive a bound we must show that if we exclude all scalar operators below some dimension
∆gap then it is possible to construct a linear functional ~ω such that

~ω · ~v∆,L ≥ 0,

{
L = 0 : ∆ ≥ ∆gap

L ≥ 2 : ∆ ≥ L
~ω · ~v0,0 > 0. (4)

Notice the strict inequality sign. We want to find such functionals using Mathematica, and this
can be achieved by using the function LinearProgramming. This function requires some objective
function that we are trying to minimize. Since we are merely asking for one functional satisfying
the constraints, we can choose the objective to be trivial, such that our linear program is

min ~ω ·~0 subject to constraints above. (5)

2. Implement the linear program using the LinearProgramming function. How low can you
make ∆gap? That by definition represents the optimal bound ∆∗, for the given Z grid.

If Mathematica gives you a non-trivial functional for some ∆gap, congratulations! That is an upper
bound on the dimension of the leading scalar operator. Or is it? Well, actually this is too quick.
In order to prove that such a bound is correct, we would need to show that refining the grid D,
adding more spins, etc, does not affect the result much – so I encourage you to experiment with
this a bit. See however the first remark below.

Remarks:

• We would not like the precise bound to be constrained by the coarseness of our grid. A way
around this is to first remove from our matrix M all scalar vectors below the gap ∆∗; and
then include an extra vector with ∆ equal precisely to ∆∗. In this way we can obtain a very
precise value of ∆∗ by bissection: we try one value, if no functional exists we increase the gap,
if a functional exists we lower it, alternating until we’ve narrowed down ∆∗ to some desired
accuracy.

• The precise value one picks on the RHS of the constraint ~ω · ~v0,0 ≥ ε acts as an effective
normalization of the functional. A problem with this is that at extremality, i.e. when ∆∗

is optimal, the functional wants to annihilate ~v0,0. A better way to proceed is to relax the
constraint to ~ω · ~v0,0 ≥ 0 and to add a new constraint, such as

~ω · ∂∆~v∆,0|∆=∆∗ ≥ 1 (6)

which guarantees the functional starts out positive at the gap.
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• We have the freedom to rescale each individual component of all vectors. The numerics will
be more stable say if we divide all vectors by a particular one, say the vector ∂∆~v∆,0|∆=∆∗

given above.

• Plotting the functionals, i.e. plotting the functions

ωL(∆) := ~ω · ~v∆,L, (7)

one should see functions which are positive semidefinite in the appropriate regions. For reason-
able grids (where reasonable is hard to quantify), the only mistake induced by discretization
is that the functional may dip down and have a zero at some point on the grid D. In between
the grid points the functional will then dip below zero. This means our functionals are strictly
speaking not well defined, and this leads to the bound being stronger than it should be. The
way around this is to refine the grid by adding extra points near the zeros.

I would recommend implementing the first three tricks; the last is more ambitious and might not
be necessary. Either way, your task now is to:

3. Repeat the analysis for several values of ∆φ and plot ∆∗(∆φ). What does the bound look
like? What about the bound at ∆φ = 1/8, is it close to 1 as for the 2d Ising model? What
does the functional look like on either side of the kink?

To see a kink will require some persistence, but the result will be worth it!
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Figure 1: A bound on the scaling dimension of the leading scalar ε appearing in the OPE σ × σ.
Obtained by following this problem set, using 10 components. In red the 2d Ising model at (1/8,1).
As we increase the number of components, the kink moves towards that point.
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