
Bootstrap Problem Solving

Type: Pencil and Paper + Mathematica + SDPB

Difficulty: Starts easy, gets hard

2d toy modular bootstrap

In this problem we will do a simple version of numerical bootstrap to constrain the

spectrum and gap of a 2d CFT.

The partition function of a 2d CFT at inverse temperature β (and zero angular poten-

tial) is

Z(β) =
∑
states

e−βE (0.1)

where E is the energy (of the state on the unit circle). The state operator correspon-

dence says that for every primary operator of weights (L0, L0) = (h, h̄), there is a state

on the unit circle with energy

E = h+ h̄− c

12
(0.2)

where c is the central charge. (The shift here is the Casimir energy.) The crossing

equation, in this context, is the statement of modular invariance:

Z(β) = Z(
4π2

β
) . (0.3)

The self-dual temperature, β = 2π, plays the same role as the crossing-symmetric point

z = z̄ = 1
2

in the correlator bootstrap.

(Virasoro symmetry actually organizes the partition function into Virasoro characters,

but for the purposes of this problem we will completely ignore Virasoro and just think

of the spectrum as a set of independent states.)

1. Define the linear functional α, acting on a function f(β), by

α ◦ f =
N∑
n=0

an(β∂β)nf(β)|β=2π (0.4)

where an are some arbitrary parameters and N is the maximum number of derivatives

that you choose to keep. (I found N ∼ 26 a good number to start with for numerical

experimentation in this problem.) Act on the crossing equation with α to conclude
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that ∑
states

α(E) = 0, where α(E) ≡
∑
n odd

anTn(−2πE) (0.5)

Here Tn(x) is called a Touchard polynomial. You can look up its properties on

Wikipedia.

Since
∑
α(E) = 0, this means we can rule out theories with certain spectra by showing

that α(E) ≥ 0 for all allowed E.

2. Write a mathematica notebook, interfacing with SDPB, to implement the following

optimization problem (within the framework above, ie ignoring Virasoro symmetry):

Consider a 2d CFT with central charge c, a vacuum state at E = −c/12, and no other

states below the ‘gap’ energy Egap. Subject to the constraint

α(E) ≥ 0 for E ≥ Egap , (0.6)

find the functional α that maximizes the vacuum contribution α(− c
12

).

Denote this maximum α∗ = αoptimal(−c/12).

Argue that if you find α∗ > 0, then the theory is ruled out.

3. Now set c = 12. Run your program with Egap = 1
2
. You should find that the theory

is not ruled out – that is, α∗ < 0. For the optimal functional, plot α(E) and confirm

that it obeys the constraint (0.6).

4. Still with c = 12, show that Egap = 2 is impossible.

5. Still with c = 12, gradually increase Egap from .5 toward 1. As you do so, plot

the extremal functional α(E). What happens to α∗ as you increase the gap? What

happens to the minima of the extremal functional?

6. Still with c = 12, show that the maximal allowed gap is Egap ∼ 1. Close to this gap,

plot the extremal functional. It should have double zeros at positive integers. This

indicates that you have discovered a solution to crossing with Egap = 1 and a spectrum

of energies

E = −1, 0, 1, 2, 3, 4, . . . (0.7)

[Caveat: You cannot see the state at E = 0 by this method because it drops out of the

crossing equation.]

7. In the theory of modular forms, there is a famous function called the J-function
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(implemented in Mathematica as KleinInvariantJ) which obeys the identity

J(τ) = J(−1/τ) (0.8)

and has an expansion in q ≡ e2πiτ near τ = i∞ with only integer powers:

1728J(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · (0.9)

Use the J-function to construct a function Z(β) that obeys crossing (0.3) and has the

same spectrum that you discovered in part (6).

8. Now set c = 24, and use your program to find constraints on Egap. (You should be

able to find some constraints, but the optimal N →∞ constraints in this case are, to

my knowledge, an unsolved problem.)
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